Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 1475-1489, 2022.
Article in Chinese | WPRIM | ID: wpr-927794

ABSTRACT

The diverse thermophilic strains of Thermoanaerobacter, serving as unique platforms with a broad range of application in biofuels and chemicals, have received wide attention from scholars and practitioners. Although biochemical experiments and genome sequences have been reported for a variety of Thermoanaerobacter strains, an efficient genetic manipulation system remains to be established for revealing the biosynthetic pathways of Thermoanaerobacter. In line with this demand, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) systems for editing, regulating and targeting genomes have been well developed in thermophiles. Here, we reviewed and discussed the current status, associated challenges, and future perspectives of the construction of thermostable CRISPR/Cas9 genome editing systems for some representative Thermoanaerobacter species. The establishment, optimization, and application of thermostable CRISPR/Cas genome editing systems would potentially provide a foundation for further genetic modification of thermophilic bacteria.


Subject(s)
Bacteria/genetics , CRISPR-Cas Systems/genetics , Gene Editing , Genome
2.
Chinese Journal of Biotechnology ; (12): 274-284, 2013.
Article in Chinese | WPRIM | ID: wpr-233246

ABSTRACT

Thermophiles can produce cellulosic ethanol at a high temperature where ethanol is directly distillated from fermentation, and biodegradation of lignocellulose can be simultaneously achieved when these thermophiles carry and express cellulase and hemicellulase genes. The simultaneous biodegradation, fermentation and distillation, a three-in-one process, can result in low production costs of cellulosic ethanol. We reviewed the advances and challenges in the approach to the three-in-one process, which refer to lignocellulases, regulation mechanisms, and genetic transfer systems.


Subject(s)
Bacteria , Genetics , Metabolism , Cellulose , Metabolism , Ethanol , Metabolism , Fermentation , Hot Temperature , Thermoanaerobacterium , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL